Getau 文章 中国霸榜AI顶会!中科院论文发表量世界第一,斯坦福2023 AI指数报告出炉!

中国霸榜AI顶会!中科院论文发表量世界第一,斯坦福2023 AI指数报告出炉!


 

 

 

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【图像分割】微信技术交流群

转载自:新智元 | 编辑:桃子

【导读】2023年人工智能指数报告发布了!这份报告显示,中国在AI顶会论文上表现世界居首,然而引用量却低于美国。另外,AI论文发表量世界前十的机构中,中国占了9席,纷纷赶超MIT。

今天,斯坦福发布了2023年AI指数报告。

66176545172415c4de3af0054f014b38.png

值得注意的是,斯坦福AI指数报告列出了「AI论文发表量」世界前十的机构,9所全部来自中国,纷纷赶超MIT。

它们分别是:中国科学院、清华大学、中国科学院大学、上海交通大学、浙江大学、哈尔滨工业大学、北京航空航天大学、电子科技大学、北京大学、以及MIT。

5500026e43d36ec2a8590d20740f0a16.png

今年的报告主要分为八大节:研究与发展,技术表现,人工智能技术伦理,经济,教育,政策和治理,多样性,以及公众观点。

以下内容提取了报告几项要点。

中美论文合作全球居首

从2010年-2021年,尽管AI论文跨国合作的步伐已经放缓,但是自2010年以来,美国和中国的人工智能研究合作数量增加了大约4倍,比中国和英国合作总数多2.5倍。

然而,从2020年-2021年,中美合作的总数仅增长了2.1%,是自2010年以来的最小同比增长率。

此外,人工智能论文的总数自2010年以来翻了一番以上。从2010年的20万篇增长到2021年的近50万篇(49601)。

c3fced39abb23aef150a265cd5c11f82.png

就AI论文发表的类型来看, 2021 年,所有已发表的AI论文中有60%是期刊文章,17%是会议论文,13%来自存储库。

虽然在过去12年中期刊和储存库论文分别增长了3倍和26.6倍,但会议论文的数量自2019年以来有所下降。

a06cc8bb2331291e81394a8a3b13c599.png

模式识别、机器学习和计算机视觉依旧是人工智能领域研究的热门话题。

352d04cc94013e49d0466eba0021f7fe.png

中国在期刊、会议和储存库论文总量方面依旧处于领先地位。

美国在人工智能会议和储存库引用方面仍然领先,但这些领先优势正被慢慢削弱。尽管如此,世界上大多数的大型语言模型和多模态模型(2022年54%)是由美国机构产生的。

1511952f4de7f83198e168956c4acbea.png

中国霸榜AI顶会,但引用量低于美国

AI期刊论文的发表,中国始终保持领先地位,2021年为39.8%,其次是欧盟和英国(15.1%),然后是美国(10.0%)。

e0111c3ee780a072a309b56e4b99fe5b.png

自2010年以来,中国人工智能期刊论文被引频次占比逐步上升,欧盟、英国、美国均有所下降。中国、欧盟和英国、美国占全球总引用量的65.7%。

b64a9f37a401a79f2ff0531d97ef17e7.png

那么,世界顶会论文发表的情况又如何?

2021年,中国以26.15%的比例在全球AI顶会发表的论文数所占份额最大,而欧盟和英国以20.29%紧随其后,美国以17.23%位居第三。

03ef43b2e3668ed27eff246c52aa5e71.png

从顶会论文引用量来看,中国虽然高产,但引用量相较于美国来说较低。美国顶会论文引用量23.9%,中国为22.02%。

从侧面可以看出,中国论文发表数量最多,但质量不如美国高。

e1eb4828042895d6afa978b1c0f29582.png

在AI论文储存库提交方面,美国在世界居首,23.48%。中国最低,11.87%。

ade388033ce58efcebeadde3102c8b0b.png

中国9所机构,AI论文发表赶超MIT

2021年,发表论文总量世界前十机构中,中国占了9所,不同机构发表的论文总数如下图,MIT位列第十,发表论文1745。

e187b90243e6654d4d0935c6a6219f4e.png

就计算机视觉领域(CV)来看,中国的十所机构位居世界前十,它们分别是,中国科学院、上海交通大学、中国科学院大学、清华大学、浙江大学、北京航空航天大学、武汉大学、北京理工大学、哈尔滨工业大学,以及天津大学。

3ae2972b907eacdae22ff9ab47daa076.png

在自然语言处理(NLP)领域,就有所不同了。

世界前十的机构/公司有:中国科学院、卡内基梅隆大学、微软、清华大学、卡内基梅隆大学-澳大利亚分校、谷歌、北京大学、中国科学院大学、阿里、亚马逊。

81a7c4b4a71341b2c42d072d2c1609ab.png

语音识别领域排名如下:

e39a91fd1dd1bf0d88150ed50a2478f7.png

工业界领先学术界

在2022年发布的重要人工智能机器学习系统中,语言系统占最多,有23个,是多模态系统数量的6倍。

6f865b2a55dad0d1b78274b1aa591e8e.png

在论文产量上,工业界领先于学术界。

直到2014年,大多数重要的模型都是由学术界发布的。从那时起,工业界便逆袭翻身。到2022年,32个重要的机器学习模型都诞生在工业界,而学术界仅有3个。

661ca60ae1d71639bb9343f49ed7ff11.png

由此可见,与非营利组织和学术界相比,构建最先进的人工智能系统越来越需要大量的数据、计算机能力和资金资源,而行业参与者固然有更多的资金资源去做这件事情。

2022年,美国产生了数量最多的重要机器学习系统,有16个,其次是英国(8个)和中国(3个)。

此外,自2002年以来,就创建的重要机器学习系统总数而言,美国已经超过了英国和欧盟、中国

dccc29a75105c39d2f6dcc6f3b0a1441.png

再来看做出这些重要AI系统背后研究者国分布,美国有最多的研究者,285人,是英国的2倍多,是中国的近6倍。

f1f6c4ef09a9b4a8792eb6a1113f66e8.png

LLM越来越大,算力越贵

大型语言和多模态模型,有时称为基础模型,是当前一种新兴且日益流行的AI模型类型,它在大量数据上进行训练并适用于各种下游应用程序。

ChatGPT、DALL-E 2和MakeA-Video等大型语言和多模态模型已经展示了令人印象深刻的功能,并开始在现实世界中广泛部署。

通过对这些模型作者的国家隶属关系进行了分析,这些研究人员中的大多数来自美国机构(54.2%)。

c7d76f047b409fc86951d73f805ecb54.png

斯坦福AI指数报告还列出了大型语言和多模态模型发布的时间表。

6fedf0aa1fc4deedd01a511679ee94bf.png

大型语言模型正变得越来越大,也越来越昂贵。

第一个大型语言模型GPT-2于2019年发布,有15亿参数,训练成本约50000美元。谷歌PaLM是2022年推出的大型语言模型之一,有5400亿参数,成本高达800万美元。

60328d343ed3766d16424e6b30bda0ed.png

从参数和训练成本来看,PalM比GPT-2大360倍,成本高出160倍。

不仅仅是 PalM,从整体上看,大型语言和多模态模型变得越来越大和昂贵。

例如,DeepMind于2022年5月推出的大型语言模型Chinchilla估计耗资210万美元,而BLOOM的训练大约耗资230 万美元。

bcc71c6258b823cd0ce55f668cb27584.png

随着时间的推移,GAN在人脸生成方面的进展,最后一个图像由Diffusion-GAN生成,这一模型在STL-10上取得了最新的SOTA。

00cd41dc5b2204366115a143f70c4cd4.jpeg

去年,随着OpenAI的DALL-E 2、Stability AI的Stable Diffusion、Midjourney、Meta的Make-AScene,以及谷歌的 Imagen等模型的发布,文本到图像生成模型逐渐走进大众视野。

如下,输入相同的提示,「一只熊猫在温暖的巴黎夜晚弹钢琴」,分别由DALL-E 2、Stable Diffusion和Midjourney这三个可公开访问的 AI 文本到图像系统生成的图像。

4a2e8aba8ef1a889300ec637bfd7c96d.png

在最近发布的所有文本到图像生成模型中,谷歌的Imagen在COCO基准测试中表现最好。

今年,创建Imagen的谷歌研究人员还发布了一个更难的文本到图像基准测试 DrawBench,旨在挑战功能越来越强大的文本到图像模型。

0541662c834bfca04f7dadc0bfc216e7.png

此外,报告还介绍了当前生成式AI模型存在一些偏见,比如给DELLE-2提示CEO时,每个人似乎都采取了交叉双臂自信的姿势。

bcf27448299e3aa41f7d5bae253d4fb4.png

在Midjourney中,当提示生成「有影响力的人」时,它会生成4张看起来年长的白人男性图像。

a0efa0d928564bd46f15888363e731dc.png

完整报告内容请参见:

https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index_Report_2023.pdf

点击进入—>【计算机视觉】微信技术交流群

最新CVPP 2023论文和代码下载


后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF

目标检测和Transformer交流群成立 扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。 一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群 ▲扫码或加微信号: CVer333,进交流群 CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人! ▲扫码进星球 ▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看


 

 

原文链接:https://blog.csdn.net/amusi1994/article/details/130023604?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522169900313716800182799799%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=169900313716800182799799&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-29-130023604-null-null.nonecase&utm_term=%E6%BE%B3%E6%B4%B22023

作者: 知澳头条

知澳资深作者

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

联系我们

1300766331

邮箱: [email protected]

澳洲本地网站设计开发团队 超20人团队,悉尼设计开发14年 联系电话:1300766331 微信: XtechnologyAU
关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部